
Unintrusively Measuring Linux Kernel Execution Times

Sven Schneider and Robert Baumgartl
Chemnitz University of Technology

09107 Chemnitz, Germany

{sven.schneider,robert.baumgartl}@informatik.tu-chemnitz.de

Abstract

We present a methodology to perform fine-grained cycle-accurate timing measurements crossing the
user-kernel boundary. Special attention is payed not to deteriorate the results by the measurement process
itself. Next, we apply our methodology to obtain execution timing for the system entry and exit paths on
x86-based Linux systems. We compare and evaluate three different mechanisms, namely interrupts, call
gates and the sysenter/sysexit facility. The measurements are performed on different processor platforms
ranging from simple Intel Pentium to Pentium 4 with Hyper Threading and an Intel Itanium system.
Our results indicate that timing for kernel entry and exit varies in a non-trivial way. Of the tested
architectures, the AMD Athlon exhibits the most efficient behavior.

1 Introduction

The work described in this paper grew from a dis-
cussion on operating system efficiency. The question
arose, how many time an operating system needs for
the system entry and exit itself without paying at-
tention to the actual system call functionality. Addi-
tionally, we wanted to find out, whether there exist
timing differences between microprocessors of differ-
ent architecture and age concerning the system entry
and exit paths. Finally, we are also interested in a
comparison between the different mechanisms avail-
able for system entry.

Of course, measuring execution times in user or
kernel mode is as easy as reading the time stamp
counter at appropriate positions. The transition be-
tween both modes is more difficult to analyze. There-
fore, we present a methodology to obtain fine-grained
performance numbers. For a number of reasons we
solely concentrate on Linux.

2 Related Work

There are a variety of profiling tools and method-
ologies available, yet none of them suited our needs
perfectly. For the profiling of the system entry and
exit paths a very fine-grained and precise method is
required. Hence, the measurement function should
not use the system entry and exit paths itself (e. g. by
using system calls) and the profiling data should be

gathered in a way which influences the timing of the
system entry and exit paths as little as possible.

The Linux Tracing Toolkit [2] is a universal pro-
filing and event tracking tool. It provides timing
measurements for both user mode (via a system call)
and kernel mode (via a normal function call) func-
tionality. To analyze the collected data, a set of
powerful tools is available. Unfortunately, user mode
measurement points can only be established using a
system call, which violates our requirements.

Another approach could be the use of a kernel
profiler kit. The Profiling in Linux HOWTO [1] de-
scribes the different general and special purpose pro-
filers thoroughly. Unfortunately, every kernel pro-
filer either (a) uses statistical profiling which is far
too inaccurate for our project, or (b) lacks the op-
portunity to profile the interaction between user and
kernel mode. Therefore, kernel profilers were not re-
garded further.

A technique called Code Splicing is described in
[5]. It is based on dynamically overwriting single in-
structions with a jump to the instrumentation code,
the overwritten instruction and a jump back. This
approach is very challenging on variable-length in-
struction architectures as IA-32, because it is hard
to predict in advance how much of an instruction
the jump actually overwrites. As a consequence, it
has been implemented for the UltraSPARC architec-
ture only. Additionally, this technique is not useable
when switching between user and kernel mode.

1



processes

not involved

syscalls
not involved

task struct

*databuffer;

data buffer
dummy

test
application

assembler−glue
syscall multiplexer

measure
syscall

register
syscall

modified

newly introduced

buffer access

via pointer

system calls

data buffer
profiling

kernel mode

user mode

switch data buffer pointer

FIGURE 1: Experimental Setup

The DeBox project [3] provides a very simple in-
terface for the application. The application simply
registers a buffer for data collection. Every time it
leaves kernel mode after that registration, the in-
ternally gathered profiling data is copied into the
buffer. When no buffer had been registered no copy-
ing is performed. Data is passed in-band without
relying on extra system calls. DeBox is available
for FreeBSD only, therefore it is as such inapplicable
too, but its concept is closest to our own ideas. The
data copying can be eliminated by directly accessing
the buffer from kernel mode (as our method does,
cf. section 3.1).

3 Measurement Methodology

Our measurement methodology of the system entry
and exit paths should provide a very fine-grained res-
olution. Furthermore, it is important that gathering
the profiling data does influence execution timing as
little as possible. To avoid disturbance of the branch
prediction, no conditional jumps are allowed within
the instrumentation code. To eliminate cache influ-
ences, measurements were repeated many times and
the instrumentation code was reduced to a minimum
size.

3.1 System Structure

Figure 1 shows the experimental setup. The test
application registers a profiling data buffer to the
kernel via a newly introduced system call. To that
aim, the task struct has been extended by an addi-
tional pointer (“databuffer”) which either points to
the registered buffer or a dummy buffer. Unregis-
tering is done by “registering” a null pointer. The

register system call switches between a dummy data
buffer and the buffer provided by the test applica-
tion. The default buffer for a process is the dummy
buffer. At selected measurement points the current
time stamp is written at the appropriate position
within the profiling data buffer. For the actual mea-
surement another system call has been introduced
which does not do anything besides writing the time
stamps. The test application is responsible for stor-
ing the collected data in user space before issuing
the next syscall after the measurement, because time
stamps are collected for every syscall (otherwise, a
conditional statement would be necessary on system
entry which would influence the branch prediction
unit). All other processes also generate time stamps
on every syscall, which are written into the dummy
data buffer. The dummy buffer is never read, there-
fore, no locking for consistency reasons is necessary.

The test application allocates a large buffer to
store a set of measurements and the (small) profiling
data buffer, which is registered to the kernel. Then,
a single measurement consisting of up to eight in-
dividual time stamps is taken by issuing the mea-
sure syscall. On return the collected time stamps
are copied into the large buffer to avoid losing them
by the following system call. This is repeated until
the large buffer is filled. The contents of the large
buffer represents the timing data of the system entry
and exit paths of a particular system configuration.

3.2 Measurement Points

Time stamps are taken at the following locations (as
shown in figure 2):

MP1 ”enter pre sci” Directly before system call
invocation. Work which is done before the

2



MP2 "enter_post_sci"

store machine state

MP3 "enter_pre_scrc"

call syscall routine

MP6 "leave_post_scrr"

restore machine state

MP7 "leave_pre_scr"

MP4 "enter_post_scrc"

chance for cache flush

MP5 "leave_pre_scrr"

MP1 "enter_pre_sci"

system call invocation

MP8 "leave_post_scr"

Assembler GlueTest Application Service Routineuser−kernel boundary

FIGURE 2: Placement of Measurement Points

privilege level changes is counted as additional
time needed for the switch itself.

MP2 ”enter post sci” As soon as possible after
entering kernel mode. Some architectures need
some post processing before the instrumenta-
tion can be executed. This post processing
time is counted as additional time needed for
the switch.

MP3 ”enter pre scrc” Directly before calling the
system call service routine.

MP4 ”enter post scrc” The first . . .

MP5 ”leave pre scrr” . . . and the last instruction
in the service routine.

MP6 ”leave post scrr” The first instruction at
the location where the service routine returns
to.

MP7 ”leave pre scr” As late as possible before
the privilege level changing instruction where
the kernel is left.

MP8 ”leave post scr” The first instruction in the
test application after returning from the sys-
tem call.

3.3 Implementation Issues

Measurement points 1 and 8 are user mode instru-
mentations (as inline assembler for a C function) and
are located in the code of the test application. The
points 2, 3, 6 and 7 are located in the assembler
glue and therefore are real assembler macros. Fi-
nally, points 4 and 5 reside in the measurement sys-
tem call. Hence, they are implemented as inline as-
sembler within a C function (and actually use the
same macro as points 1 and 8).

To ease porting the methodology to different
CPU architectures, the instrumentation code is
divided into an architecture-independent and an
architecture-dependent part. The latter consists
mainly of the measurement point implementation.
As already mentioned, there are two different ver-
sions, depending on the position of the point. For
example, the macro for points 2, 3, 6 and 7 for the
IA32 architecture is implemented as follows:

#define PROC_LARGE_MP(x) \

pushl %eax ;\

pushl %ebx ;\

pushl %ecx ;\

pushl %edx ;\

xorl %eax, %eax ;\

cpuid ;\

GET_CURRENT(%ebx) ;\

movl SCMI_DATA_OFFSET(%ebx),%ebx ;\

rdtsc ;\

movl %edx,((x)+4)(%ebx) ;\

movl %eax,(x)(%ebx) ;\

xorl %eax,%eax ;\

cpuid ;\

popl %edx ;\

popl %ecx ;\

popl %ebx ;\

popl %eax

Due to possible instruction reordering, reading
the time stamp counter must be protected by se-
rializing instructions, hence the surrounding cpuid.
Register ebx holds the pointer with the profiling data
buffer’s address. The parameter x of the macro is
the individual position of the time stamp within the
profiling data buffer. The macro is inserted at ap-
propriate locations in arch/i386/entry.S .

Besides IA-32, we also implemented our method-
ology for the Intel IA-64 architecture. More informa-
tion concerning both implementations can be found
in [4].

3



3.4 Kernel Entry/Exit Variants

The standard system call mechanism of Linux 2.4.x
uses the interrupt 0x80 for privilege level change,
then stores all registers on the stack, multiplexes the
service routine, handles signals and rescheduling, re-
stores the registers and finally returns to user mode.
To get an idea how the accompanying functionality
influences the time to switch to the service routine
and back, different variants of the system entry and
exit were implemented (cf. table 1).

intr call gate sep

Standard Work int80 cg1 sep1
skip *-handling code int81 cg2 sep2
Service Routine only int82 cg3 sep3

TABLE 1: Overview of Kernel Entry/Exit
Variants

A first aspect was to reduce the work on system en-
try and exit. Therefore, besides the “full-featured”
entry path (Standard Work), two variants with re-
duced functionality were implemented. The first one
eliminates signal and scheduling handling code (skip
*-handling Code) and the second one calls the service
routine directly (Service Routine only). Even system
call multiplexing has been removed from that latter
variant.

The Intel IA-32 architecture provides three dif-
ferent mechanisms for changing the privilege level,
namely by interrupt (intr), by call gates (call gate)
and by sysenter/sysexit mechanism (sep). The three
mechanisms were combined with the three imple-
mentation complexity variants resulting in nine dif-
ferent system configurations.

3.5 Experimental Platforms

A total of six different platforms were analyzed:

• IA-32

P1 – Intel Pentium MMX, 250 MHz

P2 – Intel Pentium II, 400 MHz

P3 – Intel Pentium III, 1.1 GHz

P4 – Intel Pentium 4 with HT, 2.8 GHz,

At – AMD Athlon, 1.0 GHz

• IA-64

It – Intel Itanium 2, 900 MHz

The measurements for the IA-32 were based on Linux
2.4.24 and 2.4.30 kernels.

The IA-64 version is based on Linux 2.6.9 (no
Linux 2.4 is available for Itanium) and does not pro-
vide any implementation variants.

4 Results

Figures 4 to 6 visualize the measured execution times
for kernel entry and exit using different system con-
figurations as discussed in section 3.4. Every bar
represents a certain configuration and consists of six
sections. Figure 3 illustrates which level of gray cor-
responds to which section of the entry and exit paths
in the timing figures.

Restore Processor State
Return from Syscall Routine
Call Syscall Routine

Leave Kernel Mode

Enter Kernel Mode
Save Processor State

E
xe

cu
tio

n

Exit

Entry

FIGURE 3: Measured Entry and Exit Sec-
tions

Of course, the order of the individual sections is al-
ways the same. After each bar, the total time for the
combined entry and exit path execution is given in
microseconds. For visual comparison, figures 4 to 6
are scaled identically.

0.576

0.263

0.295

0.560

P1

At

P2

P3

P4

0.282It

0.798

FIGURE 4: Standard Interrupt En-
try/Exit, different Architectures

The first question to answer was how much time the
conventional interrupt-based Linux entry and exit
actually needs. Figure 4 illustrates the results. It
is interesting to note that the Pentium 4 is almost as
slow as the original Pentium MMX, whereas Athlon
and Pentium III need only approximately half of that
time. It can be seen that not only the privilege switch
is faster for the latter systems, but also the inner sec-
tions. The Itanium is almost equally fast, its time
for privilege level changes is especially low.

The second question we investigated was a com-
parison between the traditional interrupt-based en-
try/exit and the more recent sysenter/sysexit mech-
anism. Figure 5 depicts the respective times for the
architectures providing sysenter/sysexit. Again, the
Athlon and Pentium III are in the lead. Pentium II

4



and Pentium 4 need more than twice the execution
time.

At

P2

P3

P4

0.161

0.475

0.175

0.390

FIGURE 5: Sysenter/Sysexit, different Ar-
chitectures

Comparing figures 4 and 5 we can conclude that on
every analyzed architecture sysenter/sysexit is more
efficient than interrupts . The P4 is faster by a factor
of 1.4 and all other architecture even by a factor of
1.6.

������������

� �

0.175sep1

sep2

sep3

0.121

0.082

cg2

cg3

cg1 0.280

0.176

0.162

0.295int80

int81

int82

0.252

0.229

FIGURE 6: Pentium III, different Imple-
mentation Variants

The last aspect discussed here is how the implemen-
tation variants perform on one and the same archi-
tecture. As an example, figure 6 shows the obtained
timing parameters for the Pentium III. The call gate
mechanism needs approximately the same time as
the interrupt (this is in fact true for all architectures).
Sysenter/sysexit is considerably more efficient. The
variants with reduced functionality (int82, cg3, sep3)
represent the performance of the pure mechanism
without any operating system overhead. It can be
seen that the fastest mechanism needs no more than
82 nanoseconds for a combined entry and exit.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

0 250 500 750 1000 1250 1500 1750 2000

co
un

t

duration [clock cycles]

System Call Round Trip Time on Pentium 4 (with HT)

int 0x80
int 0x81

sep1
sep2
sep3

FIGURE 7: Histogram of Entry/Exit Tim-
ing for Pentium 4

When obtaining measurement times for the Pen-
tium 4 we noticed an interesting phenomenon. Re-
gardless of the implementation variant, the individ-
ual execution times varied to a considerable degree.

Figure 7 shows histograms of the execution times
of some variants of entry/exit paths. The bell-like
shape and size of the histograms are almost iden-
tical. Furthermore, the individual execution times
differ exactly by seven clock cycles! The explana-
tion of that unusual behavior is beyond the scope
of that paper, though. All other architectures (in-
cluding the Intel Itanium) exhibited almost constant
execution times.

5 Conclusions and Outlook

We presented a methodology to cycle-accurate mea-
sure operations crossing the user-kernel boundary.
Special attention was payed to minimize timing in-
fluences by the measurement process itself.

We proved that sysenter/sysexit is the most ef-
ficient syscall mechanism regardless of the operating
system overhead and quantified its performance ad-
vantage over the traditional mechanisms. Second, we
observed that system path efficiency does not sim-
ply follow processor evolution. Apart from the Pen-
tium 4 all processor architectures exhibited a very
predictable timing. The reason for the Pentium 4’s
timing variations is a subject of further research.

To broaden the performance comparison we en-
courage interested readers to port our methodol-
ogy to architectures and kernel versions not ana-
lyzed so far. The kernel patch and the test applica-
tion can be downloaded at http://rtg.informatik.tu-
chemnitz.de .

References

[1] John Levon, 2002, Profiling in Linux HOWTO,
Revision 0.1

[2] Opersys, Inc., Linux Tracing Toolkit,
http://www.opersys.com/LTT/

[3] Yaoping Ruan, Vivek Pai, 2004, Making the
“Box” Transparent: System Call Performance
as a First-class Result, Proc. USENIX 2004,
pp. 1–14

[4] Sven Schneider, 2005, Profiling and Comparison
of Operating System Entry and Exit Paths, Stu-
dent Research Project, Chemnitz University of
Technology

[5] Ariel Tamches, Barton P. Miller, 1999, Fine-
grained dynamic instrumentation of commodity
operating system kernels, Proc. OSDI, New

Orleans, pp. 117–130

5


