
An Efficient Snapshot Technique for Ext3 File System in Linux 2.6

Seungjun Shim*, Woojoong Lee and Chanik Park
Department of CSE/GSIT*

Pohang University of Science and Technology, Kyungbuk, Republic of Korea
{zephyr*,wjlee,cipark}@postech.ac.kr

Abstract

Snapshot is to create an instant image of a file system. Creating a snapshot image with little processing
and space overheads is critical to provide the continuous data service during backup.

In Linux, there are two types of snapshot techniques available : volume-based approach like Logical
Volume Manager(LVM) and file system-based approach like SnapFS. The volume-based LVM provides
efficient space management capability, but requires some space to be exclusively reserved to store snapshot
images and results in high snapshot processing overhead. The file system-based SnapFS performs better
than LVM due to its less snapshot processing overhead. Moreover, the SnapFS does not have to reserve
some space exclusively for snapshot images. Therefore, the file system-based SnapFS is considered a
better solution in the desktop environment where large-scale space management capability is not that
criticial. However, SnapFS is available only in Linux kernel 2.2.

In this paper, we develop a file system-based snapshot for the ext3 file system in Linux kernel 2.6.
The main concept of the file system-based snapshot mainly come from old-version SnapFS. Experimental
evaluation shows that our implementation is quite efficient and working correctly.

1 Introduction

In recent days, as mass storage devices are be-
ing broadly used on desktop PCs, large-scale data
backup techniques become more and more impor-
tant. However, in spite of its importance, off-the-
shelf data backup methods available on Linux such
as cpio and rsync[1] are not sufficient to satisfy some
requirements of large-scale backup. Most of all, while
these methods are running, all I/Os must be blocked
to guarantee data integrity. Thus, they are not ap-
plicable to large-scale data backup.

The snapshot is an advanced technique that can
make an image of file system at a point of time. The
image, called a snapshot image, is useful as a large-
scale backup. It provides high backup performance
and allows concurrent data services to users during
backup.

There are two types of snapshot methods. One
is a file system level approach which depends on a
specific file system, and the other is a volume level
on the the device driver layer. Each of them has
some pros and cons. Because the file system level
approach depends on an underlying file system, it
has much lower portability. However, it is more ef-
fective to construct a snapshot image by using some

information provided by the file system. In the vol-
ume level approach, there is another serious problem
with its processing. It needs exclusively reserved free
space for snapshot images. Moreover, the size of the
reserved space is determined by monitoring the ac-
cess pattern of its target volume on run-time.

In Linux systems, the SnapFS[2] is the most well-
known file system which was implemented using the
snapshot technique on the ext2 file system in Linux
kernel 2.2. However, it is not available on the current
Linux kernel. The LVM/LVM2[3], one of the latter
approaches, is an implementation of device virtual-
ization layer on a block device driver in Linux kernel.
Although it provides a large-scale backup mechanism
and is available on the current kernel, it has the prob-
lems described above.

In this paper, a new version of SnapFS is devel-
oped for the ext3 file system[4] on Linux kernel 2.6 in
order to realize an effective large-scale backup. The
experimental evaluation shows that our implementa-
tion is quite efficient in snapshot performance when
compared with the old version SnapFS in Linux ker-
nel 2.2 and with LVM2.

The rest of this paper is organized as follows.
Section 2 surveys background works. Section 3 de-
scribes the design of the SnapF and interesting im-
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plementation aspects. In section 4, we evaluate the
SnapFS performance. Finally, we conclude in Sec-
tion 6 and suggest future directions.

2 Related Works

As mentioned above, the off-the-shelf snapshot meth-
ods are difficult to apply in the current Linux envi-
ronment, because they heavily depend on a specific
file system or requires an exclusively reserved disk
volume for snapshot images. In this section, we de-
scribe two approaches for the snapshot: file system-
level and volume-level approaches.

2.1 File System-level Snapshot

As a file system level snapshot approach, there are
some file systems such as WAFL[5], VxFS[6], FFS[7]
and ext3cow[8]. The Write Anywhere File Layout
(WAFL) file system is based on Log-structured File
System (LFS)[9]. It maintains all data with its meta-
data on a specific tree structure and provides the
snapshot through managing this structure.

Veritas File System (VxFS) is a file system that
was developed by Veritas Software as the first com-
mercial journaling file system. VxFS also supports
the snapshot based on block-level Copy-on-Write
(COW). VxFS has a problem that free space called
the snapshot file system must be reserved and it is
only available while mounted.

Fast File System (FFS) is a popular file system in
BSD. It also supports the snapshot based on COW
and maintains snapshot images with a special file,
called the snapshot file. The problem with FFS is
that it is heavily dependent on the BSD environment.

Ext3cow was developed in Linux kernel 2.4. It
extends the ext3 file system to support the snapshot
through improving the in-memory and disk metadata
structure. It not only shows efficient performance
compared with ext3, but also supports the snap-
shot with low overhead. However, to use ext3cow,
mkfs.ext3, a file system format utility, have to be
patched. That is, although ext3cow extends the ext3
file system, the ext3cow is an entirely different file
system. Thus, the snapshot in the ext3cow file sys-
tem also has very low portability.

2.2 Volume-level Snapshot

In this section, some of volume-level snapshot ap-
proaches are described. The volume-level snapshot
is usually performed by a volume manager such as
LVM/LVM2[3] or PSDD[10]. These methods have
a common problem in that they must have reserved
disk volume dedicated for snapshot images. Logical

Voume Manager (LVM)/LVM2 is a volume manager
located between a file system and a device driver.
The snapshot in LVM is achieved by block-level
COW and is performed on a unit of Logical Volume
(LV) in the Volume Group (VG). The main prob-
lem of LVM/LVM2 is that it needs a reserved disk
volume called Snapshot Volume (SV). If the size of
snapshot image is larger than SV, LVM/LVM2 will
invalidate a snapshot image. Therefore SV must be
at least equivalent in size to its target LV.

PSDD is a device driver for the persistent snap-
shot and supports data backup without any depen-
dence on file systems. The snapshot under the PSDD
is performed on a block device and the blocks that
are modified during the backup, are copied to the
reserved snapshot disk and the mapping informa-
tion between target disk and the snapshot disk is
maintained to guarantee the data integrity. The
PSDD also requires an exclusivly reserved disk vol-
ume called the snapshot disk for snapshot images
and may lose all snapshot images when a disk failure
occurs.

3 A File System-based Snap-

shot Solution in Linux 2.6

SnapFS is an open source light-weight file system re-
siding on top of the ext2 file system in Linux ker-
nel 2.2. It supports a snapshot operation by the
block-level copy-on-write (COW) technique and the
entire disk spaces defined by a file system will be
used to store snapshot images as well as file infor-
mation. SnapFS maintains file’s metadata related
to snapshot while the underlying file system (that
is, ext2 file system) manages file’s data as well as
snapshot image and should support the block-level
copy-on-write technique.

3.1 SnapFS Architecture

In this section, we describe details of the SnapFS
architecture.

FIGURE 1: SnapFS Architecture
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Figiure 1 shows the SnapFS architecture.
SnapFS consists of two sub components:

snap current and snap clone. The snap current is
an interface for supporting block-level COW to the
underlying file system and the snap clone handles a
read-only file system for snapshot images only.

SnapFS operates by the operation-filtering be-
tween VFS and the underlying file system. When
VFS invokes functions of the underlying file sys-
tem, SnapFS captures it and performs some oper-
ations which are necessary to block-level COW or
read snapshot images.

Especially, because snap clone is explicitly sep-
arated from currently used file system, called
snap current, there is no I/Os block to guarantee
data integrity even if snapshot images are accessed.

3.2 Snapshot in the SnapFS

In this section, we describe details of the snap-
shot operation in SnapFS. As mentioned above, the
SnapFS support the snapshot base on block-level
COW, which is achieved through managing address
space information. The address space information
defines memory mapping of blocks in the file, and
it is managed by struct address space in the Linux
kernel. Because the block-level COW is performed
by using this structure rather than blocks on disk
volume directly, the SnapFS supports the snapshot
more efficiently.

extended attributeextended attribute

i_block[]i_block[]

extended attributeextended attribute

i_block[]i_block[]

indirected

EAEA AA BB CC C’C’

primary inode

(snap_current)

indirect inode

(snap_clone)

write() i_block[]i_block[]

FIGURE 2: Block COW operation of
SnapFS

Figure 2 describes this operation. When the
snapshot command is issued, SnapFS allocates a new
inode, called the indirect inode and copies the ad-
dress space information of the primary inode to the
indirect inode. By copying the address space, the
primary inode shares all its blocks with the indirect
inode without any actual block copies. If any block
modification occurs, SnapFS only has to allocate new
blocks to the primary inode and apply these blocks
to its address space.

SnapFS also uses the extended attributes of the
primary inode for managing the relationship between
the primary and indirect inodes. The relationship
which is stored into extended attributes with a table
form is used to access indirect inodes, called snapshot
images, in snap clone.

3.3 Porting Issues

As mentioned above, because the old version of
SnapFS was developed in Linux kernel 2.2, there are
some issues that should be considered. We summa-
rize these issues below:

• separation of inode and file operation

• creation of super block on underlying file sys-
tem rather than VFS layer

• use of 32bit device type

• access to the address space structure through
the file structure

3.3.1 The separation of inode and file oper-

ation

Most of all, the big change is a separation of inode
and file operation structure. In Linux kernel 2.2,
there is ”has a” relationship between inode opera-
tion and file operation structure even though con-
ceptually there is not. However, in 2.6, file operation
structure is explicitly separated from inode operation
structure.

The inode operation is managed by struct in-
ode operations inside the Linux kernel. It defines
operations that are related to a file, such as open or
close and also defines what operations are available
with opened files. The file operations are also man-
aged by a data structure, called struct file operations.
It consists of operations that are normally avail-
able to any file on the file system. Therefore,
struct file operations contains create, remove and re-
name operations and struct inode operations con-
tains open, close, read and write operations .
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FIGURE 3: inode and file operation struc-
tures in Linux kernel 2.2 and 2.4.6

In Linux kernel 2.2, because the inode operation
contained file operation, there is unnecessary depen-
dency between the two structures. Thus, sometimes
a file operation may have an unrelated operation.
Since Linux kernel 2.4 these two structures are ex-
plicitly separated, as in figure 3, so many functions
are modified.

3.3.2 The super block structure

In Linux kernel 2.6, a super block of the file system
is allocated on the underlying file system rather than
the VFS layer. Due to the change of the policy about
allocating super blocks, we developed features to al-
locate a super block structure and set its values for
the snap current and snap clone file system.

Linux kernel 2.2 and also 2.4 allocates the super
block to the VFS layer; however, in 2.6, the super
block is allocated on the underlying file system. This
causes the following two modifications.

First, it means that snap current and snap clone
can not use the super block that is made from VFS
and contents of the super block structure may be
quite different from lower versions of Linux. For
this reason, we developed a new way to allocate a
new super block in snap current and snap clone. In
addition, because the super block structure of the
snap clone has almost the same contents as that of
snap current, we modified it to reuse the super block
of snap current, except for some values such as the
flag field which has to be set read-only.

Second, SnapFS must handle the block de-
vice information shared between snap current and
snap clone. The block device information defines the
block device to which the super block belongs. It is
not necessary to take care of the block device infor-
mation in the old version of SnapFS because VFS

allocates super block structure and SnapFS just uses
it. However, as SnapFS has to make super block
structure itself, it should be handled in snap current
and snap clone.

3.3.3 Change of the device type

Linux kernel 2.6 uses dev t rather than kdev t for
describing a block device type.

cache
table=0
cache
table=0

cache
table=1
cache
table=1

cache
table=2
cache
table=2

clone1clone1

clone2clone2

clone3clone3

clone1clone1

clone1clone1

clone2clone2

struct snap_cache

FIGURE 4: snap cache structure

Figure 4 shows the snap cache structure maintained
inside of SnapFS. The snap cache structure consists
of the information about snap current, snap clone
and snapshot images. This structure is the most im-
portant information and is heavily used by SnapFS.
For example, currently used snap current, how many
snapshot images each snap current has, which snap-
shot image snap clone is related to and other im-
portant information are managed by snap cache.
SnapFS identifies each information with a device
type which is stored in the block device structure.

Since Linux kernel 2.5, device type is described
by 32bit dev t type rather than kdev t type, 16bit.
Therefore, we should modify many parts of the
SnapFS to support this modified device type.

3.3.4 The Address space structure

In Linux 2.6, the address space structure is accessed
through not only struct inode, but also struct file.
The struct file is created when the file is opened and
defines how a process interacts with a opened file
and the struct inode defines all information needed
by the file system to handle a file. Conceptually,
struct inode is include in struct file.

As mentioned above, SnapFS supports the snap-
shot with the block-level COW. In SnapFS, a block-
level COW operation is performed by managing the
address space structure rather than handling blocks
on the disk volume directly. In lower versions of
Linux such 2.2 or 2.4, the address space is managed
through struct inode in struct file rather than struct
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file directly. For this reason, the old SnapFS main-
tains only the address space in struct inode. How-
ever, Linux kernel 2.6 accesses the address space
through struct inode in struct file as well as struct
file itself.

Therefore, the SnapFS should manage address
space structures of both struct inode and struct file,
so we implemented that the address space of struct
inode and of struct file have the same information
when they are modified for a COW operation.

4 Performance Evaluation

We evaluated our implementation of SnapFS in
Linux kernel 2.6 compared with the old version
SnapFS and LVM2. We ran all the benchmarks on
a 1.4GHz Pentium 3 machine with 1GB of RAM.
All experiments were located on Segate 120GB
7200RPM SCSI hard drives. The machine was run-
ning either the new SnapFS and the 2.6.10 kernel or
the old SnapFS and the 2.4.20 kernel.

We use the Bonnie benchmark program which
was modified to evaluate performance of sequential
read on the snap clone mounted read-only mode.
Considering effects of buffer cache on Linux, all ex-
periments only ran on 500MB, 700MB, 1GB and
2GB file sizes. All experiment results are averages
of twenty tests, and we measured performance of the
block read and write operations among many Bonnie
benchmark results.

4.1 Filtering Overhead

Firstly, we evaluated filtering overhead of SnapFS in
Linux kernel 2.6. Because SnapFS is operated by the
operation filtering between VFS and the underlying
file system such as ext3, it is important to show the
filtering overhead of SnapFS.
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FIGURE 5: Filtering overhead to write op-
eration

Figure 5 shows the result of filtering overhead to
write operation of the SnapFS with normal write per-
formance of ext3 file system. For each file size, the

SnapFS performance averaged about 3% lower than
ext3.
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FIGURE 6: Filtering overhead to read op-
eration

Figure 6 shows the result of filtering overhead to read
operation. This result also shows that read filtering
overhead is very low, averaging below three percent.
Therefore, SnapFS has almost no effect on normal
operations of the underlying file system.

4.2 The performance of snapshot im-
age read
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FIGURE 7: Performance of the snapshot
image read (500MB and 700MB file size)
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FIGURE 8: Performance of the snapshot
image read (1GB and 2GB file size)

Figure 7 and 8 show performance of the snapshot im-
age read with the snapshot depth from 1 to 5 com-
pared with the old version of SnapFS. We use two
separate graphs because the results of the 500MB
and 700MB file size have largely different values from
those of 1GB and 2GB file size. Read performance in
SnapFS, especially snap clone, decreases an average
of 37MB/sec for below 1GB file size and 22MB/sec
for above 1GB file size, regardless of the snapshot
depth from 1 to 5.
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The snap clone of the old version shows that read
performance between 1GB and 2GB file size is quite
different; however the snap clone in the newly de-
veloped SnapFS shows more stabilized results. The
snap clone in Linux kernel 2.6 also shows much bet-
ter read performance than the old version in 2GB
file size where it has no effects from the buffer cache.
Additionally, the result about 1GB file size shows
that SnapFS in Linux 2.6 has much lower perfor-
mance than the lower version because the SnapFS
was developed and optimized in the Linux kernel 2.2
environment and effects of buffer cache in Linux ker-
nel 2.2 and 2.6 are quite different.

4.3 The efficiency of COW operation
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FIGURE 9: The efficiency of COW opera-
tion (1GB, 2GB)

Figure 9 is the result of write operation performance
in snap current after the snapshot is issued. This re-
sult shows how efficient block-level COW in SnapFS
operates compared to LVM2.

Whenever a write operation occurs to
snap current, the SnapFS performs COW to blocks
of files, and LVM2 does the same. In this case, block-
level COW in the SnapFS averages 3.5% faster than
LVM2. Bonnie’s rewrite test performs the following
series of operations: read each 16kb chunk of the
file, dirty it, and then rewrite it. That is, the rewrite
result describes how efficient COW operates against
localized I/O in this experiment. Especially, block-
level COW operation of the SnapFS is about five
times faster than LVM2 against localized I/O.

5 Conclusion

Creating a snapshot image with little overhead is im-
portant for continuous data service as well as data
backup. In this paper, we have developed an effi-
cient file system-based snapshot and evaluated its
effectiveness in ext3 file system in Linux kernel 2.6.
Our solution has low snapshot processing overhead,
resulting in 10.26% better read throughput for snap-
shot images compared with SnapFS. However, it

is observed that the read throughput drops signifi-
cantly when snapshot images are read. Our future
work is to optimize read performance for snapshot
images by prefetching the related metadata.
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