
Hard Real-Time Networking on FireWire

Yuchen Zhang, Bojan Orlic, Peter Visser, Jan Broenink
University of Twente

Enschede, the Netherlands

Yuchen623@gmail.com

B.Orlic@ewi.utwente.nl

P.M.Visser@ewi.utwente.nl

J.F.Broenink@ewi.utwente.nl

Abstract

This paper investigates the possibility of using standard, low-cost, widely used FireWire as a new

generation fieldbus medium for real-time distributed control applications. A real-time software subsys-

tem, RT-FireWire was designed that can, in combination with Linux-based real-time operating system,

provide hard real-time communication over FireWire. In addition, a high-level module that can emulate

Ethernet over RT-FireWire was implemented. This additional module enables existing IP-based real-

time communication frameworks to work on top of FireWire. The real-time behavior of RT-FireWire

was demonstrated with a simple control setup. Furthermore, an outlook of the future development on

RT-FireWire is given.

1 Introduction

1.1 Hard Real-Time Network (field-
bus) in Distributed Control

Computer-controlled systems are more and more of-
ten implemented on top of distributed hardware ar-
chitectures. Compared with a centralized architec-
ture, the distributed architecture can achieve higher
computation throughput, enhanced capabilities for
fault tolerance and easier maintenance per part of
the system. On all distributed control architectures,
a common critical issue is the hard real-time com-
munication infrastructure, which is normally refered
to as a fieldbus.

Typical distributed control systems come in all
topologies and sizes, with widely varying workload
imposed by one or more control loops repeated with
frequencies typically falling in the range between 100
Hz and 5 kHz. There is no single perfect fieldbus
that fits in all types of control applications. A field-
bus will be a suitable choice in the context of a given
application if and only if real-time guarantees can be
offered to meet the temporal characteristics of mes-
sage transmissions required by the given application.

Every fieldbus has certain hard limits of its real-
time capabilities imposed by characteristics of the

network protocol and the hardware part of its imple-
mentation. If the protocol/hardware component of a
network cannot meet the requirements of the appli-
cation at the hand, another type of fieldbus should
be chosen. However in practice, often the software
layer of a network plays a key role in its determinism
and applicability in hard real-time systems. When
such a software layer is implemented improperly, the
promising characteristics of the protocol / hardware
part will not be exploited to the maximum extent.
Often, software layers are implemented for widely
used, but essentially non real-time operating sys-
tems, e.g. GNU/Linux. Those operating systems
are optimized for maximizing system throughput and
improving average performance. Software layers im-
plemented on top of such operating systems will pay
the price of being less deterministic than they ought
to be.

In this research an attempt was made to imple-
ment a hard real-time network based on a standard,
widely used and relatively cheap hardware. Ether-
net, FireWire and USB are the most widely used
communication interface equipped by standard com-
puters of today. FireWire and Ethernet are peer-
to-peer networks and thus more suitable for dis-
tributed control systems. Several implementations
of the real-time software layer on top of Ethernet al-

1

ready exist[1]. FireWire is on the other hand less re-
searched as a real-time network. Here, RT-FireWire,
a real-time software layer above FireWire hardware,
currently running on Xenomai[5], is introduced.

The main objective of this paper is to present
the design of RT-FireWire and its extensability. Sec-
tion 2 deals with a brief introduction of FireWire and
the inadequacy of using Linux FireWire subsystem[3]
for real-time applications. Section 3 explains the
most important aspects of the RT-FireWire design,
plus the benchmark that illustrates RT-FireWire’s
usability for real-time applications. Section 4 intro-
duces the implementation of real-time IP network
over FireWire. Section 5 briefly discusses a control
system study case and analyses the obtained results.
At the end of this paper, summary and future work
are given.

2 FireWire and Its Subsystem

in Linux

2.1 Brief Introduction of FireWire

FireWire, also known as IEEE1394[2] is a high-
performance serial bus for connecting heterogeneous
devices. Though firstly targeted for consumer-
electronic applications, such as high-speed video
transmission, FireWire also presents very valuable
characteristics for communication in industrial ap-
plications, e.g. distributed control system.

The bus topology of FireWire is tree-like, i.e.
non-cyclic network with branch and leaf nodes. The
physical medium supports data transmission up to
400 Mbps in the 1394a specification. In the 1394b
specification, the speed even rises to 3.2 Gbps. Two
transfer modes are supported on FireWire: asyn-
chronous and isochronous. As illustrated in Figure 1,
a mix of isochronous and asynchronous transactions
is performed by sharing the overall bus bandwidth,
whose allocation is based on 125 µs intervals, the
so-called FireWire cycles.

An isochronous transaction targets one or more
nodes by being associated with a multicasting chan-
nel number. There can be maximally 64 channels in
total. Once the bus bandwidth has been allocated
for an isochronous transaction, the associated chan-
nel can receive a guaranteed time-slice during every
125 µs cycle. Up to 80% (100 µs) of every bus cycle
can be allocated to isochronous channels. Because
this transaction type does not re-transmit lost or cor-
rupted packets, but delivers data at constant rate, it
is well suited for the time-triggered state message
transmission in distributed control systems.

In the asynchronous transaction phase, the whole
network on FireWire appears as a large 64-bits
mapped bus address space, with each node occupying
a 48-bits mapped space. The higher 16 bits are used
to identify nodes1. An asynchronous transaction is
split into 2 sub-transactions: a request to access a
piece of address on another node and response. Coor-
dination between request and response is ascertained
by the Transaction Layer protocol. Since guaranteed
data delivery is provided through acknowledgment,
asynchronous transaction is targeted for non-error-
tolerant applications, like command and control mes-
sage transmission in distributed control system.

Cycle

Start

125 us

Cycle N

Up to 63 channels

Isochronous Packet in different channels

Asynchronous Packet

Cycle N+1

Cycle

Start
Ch 0 Ch N...Ch 0

Cycle N-1

FIGURE 1: FireWire Cycle

Application Layer
Asynchronous
transfer
interface

Isochronous
transfer
interface

Transaction Layer

Link Layer

Physical LayerB
u

s
 M

a
n

a
g

e
m

e
n

t
L

a
y

e
r

Serial Bus

FIGURE 2: FireWire protocol layers

As shown in Figure 2, the FireWire protocol de-
fines several layers with specific roles. The Physical
Layer deals with transmission medium issues, cabling
and signal levels. The Link Layer performs the CRC
checks, determines the type of transaction and for-
wards the received packet to the next layer. The
Transaction Layer provides support for asynchronous

1Here, we only talk about the peer-to-peer asynchronous transaction. In the 1394a supplement, a multicasting packet in

asynchronous transaction is also defined.

2

transactions and relies on the services of Link Layer
to achieve this. Isochronous transfers are directly
issued to Link Layer. The bus management layer
takes care of some bus level functions: isochronous
bandwidth allocation, power management and cycle
master management. Cycle Master is the role taken
by a node that initiates start of the bus cycle by
sending a cycle start message.

2.2 Performance Benchmark on
Linux FireWire Subsystem

The first step was to explore the usability of the
Linux FireWire subsystem in real-time context. A
benchmark was used to evaluate the system’s per-
formance in 4 cases: both isochronous and asyn-
chronous transactions were tested under light and
heavy system load.

In each case, two nodes were involved (as shown
in Figure 3): one was the requesting node that was
actively sending the data; another was the target
node that was passively receiving the data. In case
of asynchronous transaction, the target node gener-
ates a response packet and sends it to the requesting
node. In asynchronous case, the transaction latency
was measured. In isochronous transaction the data
sending rate was 1 kHz. and the drift of the subse-
quent interval of receipts from the expected 1ms was
measured. For each case, 100,000 data samples were
collected for analyzing. During the experiment, the
data payload was always 56bytes.

Lasyn

1ms

Lasyn

1ms

1ms

1ms

Diso

1ms

Diso

Requesting

node
Target

Requesting

node Target

FIGURE 3: Experiments on FireWire

To conduct the experiment under heavy loaded
condition, extra processing load needs to be imposed
explicitly. The combination of three ways to impose
system load was used in this experiment.

• Creating a flood of interrupts from external
world by using a third node to send a lot of
random data to the nodes in experiment via
Ethernet.

• Creating a flood of interrupts from hardware
disk I/O by reading the whole hard disk.

• Creating a flood of system calls via Linux com-
mand line, which makes a lot of kernel-user
context switch.

The test bench setup employs two PC104 stacks
connected via FireWire. The used PC/104 boards
has VIA Eden 600 MHz processor, 256 Mb Mem-
ory, 32 Mb flash disk. The used FireWire Adapter is
PC/104 board with VIA VT6370L Link & Physical
LayerTransaction Layer chip, supporting 400 Mb/s
transferring speed at maximum. On the software
side, Linux kernel version 2.6.12 is used.

2.3 Experiment Results

The result is presented by using cumulative percent-
age curves. At any point on the cumulative per-
centage curve, the cumulative percentage value (y-
value) is the percentage of measurements that had
a latency less than or equal to the latency value (x-
value). The latency at which the cumulative percent-
age curve reaches 100 percent represents the worst-
case latency measured. For real-time transaction la-
tency, the ideal cumulative percentage curve is one
that is steep with a minimal decrease in slope as the
curve approaches 100 percent. The cumulative per-
centage at a certain latency value can be interpreted
as the probability of the transaction being able to
meet real-time constraints when its deadline is as-
sumed to be equal to that latency value. For exam-
ple, let’s imagine a networked control system (with
dominant communication delay) running with 10kHz
sampling frequency. If the control system is designed
in such a way that control delay is exactly the same
as sampling period, then cumulative percentage la-
tency of 97% would mean that in 97% of the cases
control action can be performed in time.

As can be seen from Figures 4 and 5, when the
system is not loaded, the experiment results on ei-
ther asynchronous or isochronous transactions al-
ready indicate a relatively big difference in latency
values (asynchronous case) or receiving rate drift
(isochronous case) in the critical range of cumula-
tive percentage (e.g. between 97% and the worst
case (100%) performance). With the load added, the
performance is clearly worsened. Moreover when the
system is heavily loaded, the curve is much less steep
than in the case system is not heavily loaded. As it
can be concluded from previous discussion, this indi-
cates increased non-determinism and poor real-time
properties.

For real-time application, it is the worst case
(or almost worst case, like 99.999% threshold) that
drives the choice for underlying system. And for typ-
ical real-time control application, e.g. high-speed

3

motion control applications, the measured worst
case performance can not satisfy the requirements.
Therefore, the conclusion can be reached: Linux
FireWire subsystem can not be used as underlying
networking platform for real-time control applica-
tion. Hence, there is a need to develop a special
FireWire subsystem for use in real-time control ap-
plication.

Asynchronous TransactionLatencyusing LinuxFireWire Subsystem

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

100.50%

0
4

0
8

0
1

2
0

1
6

0
2

0
0

2
4

0
2

8
0

3
2

0
3

6
0

4
0

0
4

4
0

4
8

0
5

2
0

5
6

0
6

0
0

6
4

0
6

8
0

7
2

0
7

6
0

8
0

0
8

4
0

8
8

0
9

2
0

9
6

0
1

0
0

0
1

0
4

0
1

0
8

0
1

1
2

0
1

1
6

0
1

2
0

0
1

2
4

0
1

2
8

0
1

3
2

0
1

3
6

0
1

4
0

0
1

4
4

0
1

4
8

0
1

5
2

0
1

5
6

0

Latency(us)

C
u

m
u

la
ti

v
e

P
o

s
s

ib
il
it

y

linuxunloaded linux loaded

FIGURE 4: Asynchronous transaction la-
tency of Linux FireWire subsystem

Drift of Data Receiving Rate on Isochronous Transaction using Linux

FireWire Subsystem

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

100.50%

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

1
0
5
0

1
1
0
0

1
1
5
0

Drift(us)

C
u

m
u

la
ti
v
e

P
e

rc
e

n
ta

g
e

linux loaded linux unloaded

FIGURE 5: Isochronous transaction drift
of Linux FireWire subsystem

3 RT-FireWire

In this section, the implementation of RT-FireWire
is presented, including the system overview, the ar-
chitecture and the core components. Secondly, the
results from repeating the same benchmark (Figure
3) on RT-FireWire is given, as a illustration about
the significantly improved real-time performance of
RT-FireWire as compared with the original Linux
FireWire subsystem.

3.1 System Overview

RT-FireWire has the Linux FireWire subsystem as
the starting point. Therefore, it exhibits all the func-
tion blocks of the original Linux FireWire subsystem,
as shown in Figure 6. Besides, two new function
blocks are added: real-time memory management

and RTcap. RTcap stands for Real-Time (Packet)
Capturing, which is designed to capture all incoming
and outgoing packets in order to facilitate network
behavior analysis. The core of RT-FireWire is imple-
mented over the RTDM (Real-Time Driver Model)
skin[9] of Xenomai.

Application Interface

Asynchronous

Operation Block

Transaction Layer

Protocol

Isochronous

Operation Block
Bus

Managem

ent

Driver Interface

Real-Time

Memory

Managment

RTcap

RT Driver RT Driver

NICNIC

NRT Appl.RT Appl.
Analysis

Tool

FIGURE 6: RT-FireWire kernel

3.2 Task Composition

The architecture of RT-FireWire is strictly divided
into several layers: Hareware Operation layer, Pro-
tocol Processing layer and Application layer. Each of
these layers corresponds to one layer in the network
protocol of FireWire: respectively Data-Link Layer,
Transaction Layer and Application layer. Each layer
is composed of one or more real-time tasks, which
are schedulable objects in the system scheduler. All
these tasks are servers that handle asynchronous
events. The task composition in RT-FireWire’s lay-
ered architecture is shown in Figure 7.

Interrupt Broker is the task that belongs to
Hardware Operation Layer. It handles various
FireWire bus events: receipts of asynchronous trans-
action request and associated acknowledgment, re-
ceipt of asynchronous transaction response and asso-
ciated acknowledgment and up to 64 events for the
data receipts via isochronous channels, etc.

The Protocol Processing Layer consists of sev-
eral tasks/brokers that perform essentially the same
service (related to services of Transaction Layer pro-
tocol) but for packets of different priorities assigned
according to the temporal requirement of applica-
tions. The mechanism of prioritizing is addressed in
Section 3.3.

The Application Layer has two types of brokers
designated to handling packets of the two transfer
mode. Those brokers allow applications to customize
callback functions that can handle packets in the ap-

4

plication specific ways.

Hardware Operation Layer

Application Layer

Interrupt Broker

Asynchronous

Response Broker

Isochronous

Packet Broker

Protocol Processing Layer

Asynchronous Request

Brokers

FIGURE 7: Layered task structure of RT-
FireWire

3.3 Real-Time Transactions

All asynchronous FireWire packets are prioritized.
Priority consists of the last 4 bits (16 priority levels)
in the first quadlet of asynchronous packet. Orig-
inally, in the specification of FireWire protocol[2]
these 4 bits are reserved for backplane environment.
However, since RT-FireWire only aims to be used in
cable environment, those bits are free to be used for
alternative purpose. In the current implementation
of RT-FireWire, the priority 0 (highest) is assigned
to packets for bus internal management service; the
priority 15 (lowest) is assigned to non real-time ap-
plications; the priorities in the between are assgined
to real-time applications. In the Protocol Process-
ing Layer, three brokers are employed to handle the
packets of the three ranges of priority, namely the
Bus Internal Service Broker, the Real-Time Broker
and the Non Real-Time Broker, as shown in Fig-
ure 8. The Real-Time Broker has the priority sort-
ing of its packet queue. The Non Real-Time Broker
stays in Linux domain as a signal handler, therefore
RT-Firewire sends the corresponding signal to Linux
upon the arrival of a packet with lowest priority.

Hardware Operation Layer

Protocol Processing Layer
Request Broker

for Real-Time Application
Request Broker

for Bus Internal Service Request Broker

for Non Real-Time Application

Dispatching Point

Requests(all)

Requests(0)
Requests(15)

Requests(1-14)

FIGURE 8: Brokers in Protocol Processing
Layer

Stamping the priority levels into each packet also
enables the priority sorting in packet sending queues,
which allows, at least on the software layer, that
transactions of higher priority can preempt the trans-
actions of lower priority.

Compared to the NIC(Network Interface Card)
driver in Linux FireWire subsystem, the driver in
RT-FireWire is extended with the capability to pro-
vide accurate timestamp services for both incoming
and outgoing packets. For incoming packets, the re-
ception time is stamped onto the packet object in
the beginning of interrupt handler (by assigning the
value of current time to the reception time element
in the packet structure). For outgoing packets, the
driver also provides the functionality to store the
value of current time into a certain part of the sent
data (as transmitting time) just before stuffing the
packet to hardware (via DMA).

3.4 Real-Time Memory Management

The implementation of Real-Time Memory Manage-
ment relies on preallocated memory management
pools, which is inspired by the design of socket buffer
management in [1]. The task receiving a packet from
another task must provide a memory buffer from its
own memory pool for packet compensation. In this
way, the tasks that have own memory pools are in-
dependent of load conditions in other parts of the
system - no task can cause unexpected memory star-
vation of other tasks in the system.

In Figure 9, the distribution of memory pools
inside RT-FireWire is illustrated, which corresponds
to both layered structure of FireWire and the task
division among Broker objects.

Bus Internal

Service

Real-Time

Application
Non Real-Time

Application

Asynchronous Request

Receive

Asynchronous

Response

Receive

Isochronous

Packet

Receive

Application

Memory pool

Potential Buffer

Exchange

Application

Layer

Protocol Processing

Layer

Hardware Operation

Layer

FIGURE 9: Layered distribution of mem-
ory pools inside RT-FireWire internals

A real-time packet buffer consists of a man-
agement header and the body of the data buffer.
The header further contains the generic part and
the protocol-specific part. The memory manage-
ment module operates only on the generic part of
the packets header, while the FireWire-specific mod-
ules operate only on the protocol-specific part. This
way, the operations on both sides are transparent to
each other, therefore the management module can
always keep the global control and monitoring of the
memory usage in the whole system regardless of the
FireWire-specific operations or the buffer exchang-
ing between FireWire protocol layer and modules at
the application layer.

5

3.5 Real-Time Packet Capturing

This service consists of two parts: packet captur-
ing module in the kernel side and the analysis tool
in the user side. The kernel-side module captures
both incoming and outgoing packets in the ”Cap-
tured Packet Queue”. Each captured packet is wait-
ing either for the processing by some applications
or the processing by analysis tool. Memory leaking
is prevented by capturing module providing, from
its memory pool, a compensation packet for every
captured packet. Application relies on the API of
Real-Time Memory Management module for deallo-
cating packets, for which the actual implementation
in Real-Time Memory Management module will not
deallocate the packet but it will instead return the
compensation packet to the application-owned mem-
ory pool. See Figure 10 for illustration of the whole
procedure.

Application Capturing Module

Before

Capturing

Captured

Application

freed (compen

-sating) packet

Packet really

freed in Capturing

module

Application Packet

Compensating Packet

Buffer pool

Link to

compensating packet

Link to

buffer pool

FIGURE 10: Packet Capturing Procedure

3.6 Comparison with Linux FireWire
Subsystem

Same experiment as the one on Linux FireWire Sub-
system was repeated on RT-FireWire, except that
the operating system used is changed to patched
Linux 2.6.12 plus SVN version of Xenomai (at the
time of writing). The results are shown in Figures
11 and 12, together with the results of experiments
on Linux FireWire Subsystem in order to make them
directly comparable.

Asynchronous Transaction Latency on Linux FireWire Subsystem

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

100.50%

0
4

0
8

0
1

2
0

1
6

0
2

0
0

2
4

0
2

8
0

3
2

0
3

6
0

4
0

0
4

4
0

4
8

0
5

2
0

5
6

0
6

0
0

6
4

0
6

8
0

7
2

0
7

6
0

8
0

0
8

4
0

8
8

0
9

2
0

9
6

0
1

0
0

0
1

0
4

0
1

0
8

0
1

1
2

0
1

1
6

0
1

2
0

0
1

2
4

0
1

2
8

0
1

3
2

0
1

3
6

0
1

4
0

0
1

4
4

0
1

4
8

0
1

5
2

0
1

5
6

0

Latency(us)

C
u

m
u

la
ti
v
e

P
o

s
s
ib

il
it
y

linux unloaded linux loaded RT unloaded RT loaded

FIGURE 11: Comparison of RT-FireWire
and Linux FireWire subsystem (Asynchronous
transaction)

Drift of Data Receiving Rate on Isochronous Transaction using Linux

FireWire Subsystem

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

100.50%

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

1
0

5
0

1
1

0
0

1
1

5
0

Drift(us)

C
u

m
u

la
ti
v
e

P
e

rc
e

n
ta

g
e

linux unloaded linux loaded RT unloaded RT loaded

FIGURE 12: Comparison of RT-FireWire
and Linux FireWire subsystem (isochronous
transaction)

As shown in the figures, both the asynchronous
latency and the isochronous drift on RT-FireWire
have quite steep curves compared to Linux FireWire
Subsystem. That means RT-FireWire gives much
more deterministic behaviour, which is especially
crucial when time critical communication for real-
time applications is needed.

4 IP over RT-FireWire

This section explains the implementation of deploy-
ing real-time IP network on top of RT-FireWire, and
the performance comparison with real Ethernet.

4.1 Ethernet Emulation

The IP over RT-FireWire is enabled via Ethernet em-
ulation, a module in the application layer. It is based
on the ”IP over 1394” specification[6], which stan-
dardizes the way to transfer IP packets via FireWire.
The Linux FireWire subsystem contains a highlevel
module Eth1394 implemented according to this spec-
ification. The Ethernet emulation on RT-FireWire
was built by taking the Eth1394 in Linux as the start-
ing point. In addition to some modifications and ex-
tensions that were needed to make the Ethernet em-
ulation real-time and compatible with RT-FireWire,
the mechanism of address resolution between the IP
address and the network address (per FireWire node)
is somewhat different than the one proposed in ”IP
over 1394” specification. One can refer to [10] for
relative information.

RTnet[4] is another open source project that pro-
vides a customizable and extensible framework for
hard real-time communication over Ethernet. RT-
net provides its real-time services via real-time vari-
ants of POSIX-conforming socket interface. Im-
plementation of Ethernet emulation layer over RT-
FireWire has enabled the usage of RTnet on top

6

of the FireWire medium, which introduces an alter-
native to Ethernet for real-time IP networking, as
shown in Figure 13.

RTnet

Eth1394

RT-FireWire Kernel

FireWire Driver

RTnet

Ethernet Driver

FIGURE 13: RTnet on top of RT-
FireWire

4.2 Comparison with Ethernet

A test bench was built between two FireWire nodes
(equipped with the same hardware and software as
described in previous section, plus RTnet 0.9) to
measure the roundtrip latency of transactions on
the IP layer over RT-FireWire. The same experi-
ments also were repeated on real Ethernet interfaces
of these two nodes. The results of both, which were
measured when system was heavly loaded, are plot-
ted together in Figure 14.

The results of the test bench shows that RT-
net over RT-FireWire gives performance compara-
ble with RTnet over Ethernet. The former shows
larger latency and larger latency variation (jitter),
i.e. the difference between 97% threshold latency
and worst case latency. This is due to the rela-
tively more complex software stack: the packet path
through the whole RT-FireWire includes more task
handover, context switches, which inevitably cause
more lantency to the whole data path. On the other
hand, the former has a less leaning slope. This is
due to the higher data transfer rate on FireWire: the
FireWire devices in experiment can transfer data at
400Mb/s, while the Ethernet devcie in experiment
can only transfer at 100Mb/s.

Roundtrip Latency on Eth1394 and Ethernet(loaded)

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500

Data load(bytes)

la
te

n
c
y
(u

s
)

97% on Eth1394 100%on Eth1394

97% on Ethernet 100%on Ethernet

FIGURE 14: RTnet on Ethernet vs. RT-
net on RT-FireWire

5 Study Case

RT-FireWire was tested with a real, albeit rather
simplistic control setup. The plant consisting of DC
motor, belt pulley and flywheel was controlled by
simple PID controller. The experiment was per-
formed for both centralized and distributed control
system. In distributed configuration one PC/104
stack is used as an I/O node that performs sensor
(encoder) acquisition and actuator (PWM) signal
update. The other node executes the code of con-
troller. In every control loop, the data packets travel
both directions from I/O node to computation node
and back. The configuration is illustrated in Figure
15.

I/O NodeController

MotionProfile

PWMEncoder

FIGURE 15: Distributed control of Linix
plant (2-Way configuration)

With 1 kHz sampling frequency, the distributed
system works well without missing any deadlines,
which means the distributed controller gives exactly
the same behavior as the centralized controller. As
shown in Figure 16, the plotted curves (of PWM,
encoder and profile of motion reference) from dis-
tributed control exactly laps over the curves from
centralized control.

m o d

0 1 2 3 4 5
t i m e

0

0 .

1

1 .

2

2 .

3
M o t i o n
P W M _ d i s t
E U I _ d i s
P W M _ c e n t
E U I _ c e n t

FIGURE 16: Comparison between central-
ized control and distributed control (1kHz)

With 5 kHz sampling frequency, some deadlines
are missed. But the measured output of the plant
shows almost no difference in the observed behavior
compared to the centralized configuration, as shown

7

in Figure 17. Note, however that this is most likely
the case due to the relatively slow dynamics of the
plant, whose behavior is almost not influenced by the
increase of sampling frequency from 1kHz to 5kHz.

m o d

0 1 2 3 4 5
t i m e

0

0 .

1

1 .

2

2 .

3
M o t i o n
P W M _ d i s t
E U I _ d i s
P W M _ c e n t
E U I _ c e n t

FIGURE 17: Comparison between central-
ized control and distributed control (5kHz)

6 Summary and Outlook

This paper introduces the real-time software subsys-
tem on FireWire (RT-FireWire), which provides de-
terministic communication over FireWire. The re-
sults from the performance benchmarking show that,
the transaction latency on RT-FireWire can be lim-
ited to a certain range usable for distributed control
application, whether the system is under heavy load
or not. Ethernet emulation over FireWire has been
fully implemented on RT-FireWire as a module in
the application layer. Via Ethernet emulation, RT-
FireWire can be connected to another real-time soft-
ware framework, RTnet. Therefore, FireWire can be
used as a new medium alternative to Ethernet for
real-time IP networking. The performance bench-
marking on Ethernet emulation and Ethernet shows
that the performance of both is comprable. A study
case was carried out to see RT-FireWire’s suitability
for a ”real-life” controlling task. The result illus-
trates that, RT-FireWire has fast and deterministic
behavior that makes FireWire fully usable as a field-
bus for distributed controlling tasks.

Future work will be focused on the development
of new modules in the application layer. One branch
is to develop a raw interface on RT-FireWire. So via
this interface, operation can be directly applied on
FireWire layer, e.g. issuing transaction, allocating
bus address space or isochronous channels. The cur-
rent raw1394 module in Linux already implements
the similar functions, but of course in a non real-
time manner. However it can be a reasonable start-
ing point. Furthermore, the potential of layering

other middleware frameworks over RT-FireWire will
be addressed. At the time of writing, two options
are in the list: one is CANopen, which has been de-
veloped (originally for communication over CAN) as
an application protocol and device model for the au-
tomation domain[7]; another is 1394AP (1394 Au-
tomation Protocol), which is an emerging standard
to build communication systems for factory automa-
tion and motion control via the application layer of
IEEE1394[8].

For more internal information of RT-FireWire,
one can refer to [10]. Based on the work presented
in this paper, RT-FireWire has been converted to an
Open Source project, registered at www.berlios.de. It
can be directly visited via rtfirewire.berlios.de

References

[1] J. Kiszka, B. Wagner, Y. Zhang, J. Broenink,
2005, RTnet-A Flexible Hard Real-Time Net-
working Framework, in 10th IEEE International
Conference on Emerging Technologies and Fac-
tory Automation, Catania,Italy.

[2] IEEE1394, 1995, IEEE standard for a high per-
formance serial bus Std 1394-1995 and amend-
ments

[3] Linux FireWire Subsystem project homepage
www.linux1394.org

[4] RTnet project homepage www.rtnet.org

[5] Xenomai project homepage www.xenomai.org

[6] P. Johansson, 1999, IPv4 over IEEE1394
RFC2734.

[7] CiA, 2002, CANopen, Application Layer and
Communication Profile, CAN in Automation.

[8] K. Frommhagen, P. Nauber, U. Schelinski, M.
Scholles, 2005, 1394AP:A Protocol for Determin-
istic Industrial Communication via IEEE1394, in
10th IEEE International Conference on Emerg-
ing Technologies and Factory Automation, Cata-
nia, Italy.

[9] J. Kiszka, 2005, The Real-Time Driver Model
and First Applications, in 7th Real-Time Linux
Workshop, Lille, France.

[10] Y. Zhang, 2005, Real-Time Network for
Distributed Control, MSc thesis 031CE2005,
University of Twente, Enschede, the Netherlands,
www.ce.utwente.nl/rtweb/publications/Msc2005/
pdf-files/031CE2005 Zhang.pdf.

8

